One-step detection of circulating tumor cells in ovarian cancer using enhanced fluorescent silica nanoparticles

نویسندگان

  • Jin Hyun Kim
  • Hyun Hoon Chung
  • Min Sook Jeong
  • Mi Ryoung Song
  • Keon Wook Kang
  • Jun Sung Kim
چکیده

Ovarian cancer is the fifth-leading cause of cancer-related deaths among women as a result of late diagnosis. For survival rates to improve, more sensitive and specific methods for earlier detection of ovarian cancer are needed. This study presents the development of rapid and specific one-step circulating tumor cell (CTC) detection using flow cytometry in a whole-blood sample with fluorescent silica nanoparticles. We prepared magnetic nanoparticle (MNP)-SiO2(rhodamine B isothiocyanate [RITC]) (MNP-SiO2[RITC] incorporating organic dyes [RITC, ëmax(ex/em) = 543/580 nm]) in the silica shell. We then controlled the amount of organic dye in the silica shell of MNP-SiO2(RITC) for increased fluorescence intensity to overcome the autofluorescence of whole blood and increase the sensitivity of CTC detection in whole blood. Next, we modified the surface function group of MNP-SiO2(RITC) from -OH to polyethylene glycol (PEG)/COOH and conjugated a mucin 1 cell surface-associated (MUC1) antibody on the surface of MNP-SiO2(RITC) for CTC detection. To study the specific targeting efficiency of MUC1-MNP-SiO2(RITC), we used immunocytochemistry with a MUC1-positive human ovarian cancer cell line and a negative human embryonic kidney cell line. This technology was capable of detecting 100 ovarian cancer cells in 50 μL of whole blood. In conclusion, we developed a one-step CTC detection technology in ovarian cancer based on multifunctional silica nanoparticles and the use of flow cytometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells

Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...

متن کامل

Detection of circulating tumor cells using targeted surface-enhanced Raman scattering nanoparticles and magnetic enrichment.

While more than 90% of cancer deaths are due to metastases, our ability to detect circulating tumor cells (CTCs) is limited by low numbers of these cells in the blood and factors confounding specificity of detection. We propose a magnetic enrichment and detection technique for detecting CTCs with high specificity. We targeted both magnetic and surface-enhanced Raman scattering (SERS) nanopartic...

متن کامل

Investigation of cytotoxicity properties of zinc oxide nanoparticles in spherical and rod shaped on leukemia cells

In this study, we reported a method to associate doxorubicin drug on folic acid functionalized SiO2/ZnO nanoparticles (NPs) in rod and spherical shapes. The clinical usage of the anticancer drug, doxorubicin (DOX), is limited by severe side effects and cell resistance. Targeted drug delivery by binding DOX to nanoparticles could overcome these limitations. The surface functionalization of the Z...

متن کامل

Application of mesoporous silica nanoparticles for drug delivery to cancer cells

Cancer is one of the main causes of death worldwide. Chemotherapy is the most common method for cancer therapy which represent non-specific side effects on normal cells and tissues and drug resistance in cancer cells. There are two main mechanisms for Multi Drug Resistance (MDR) in cancer cells including: drug efflux pump and activation of anti-apoptotic pathways. Cancer chemotherapy disadvanta...

متن کامل

Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups

BACKGROUND AND METHODS Nanoparticles engineered to carry both a chemotherapeutic drug and a sensitive imaging probe are valid tools for early detection of cancer cells and to monitor the cytotoxic effects of anticancer treatment simultaneously. Here we report on the effect of size (10-30 nm versus 50 nm), type of material (mesoporous silica versus polystyrene), and surface charge functionalizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013